Installation of Child Safety Seats in Selected 1988-1989 Model Year Automobiles

The United States Guvernment does not endorse products or manufacturers. Trade or manufacturers' names appear only because they are considered essential to the object of this report.

INSTALLATION OF CHILD SAFETY SEATS IN SELECTED 1988-1989 MODEL YEAR AUTOMOBILES

Page
Preface 1

1. Introduction 3
Background. 3
Purposes of the Child Safety Seat Study 3
2 Test Design and Procedures 5
3 Data Analysis and Results 9
Overview 9
Types of Problems by Vehicle 12
Problems by Child Seat Model 12
References 18
Appendix A Child Safety Restraint Device Evaluation Form 21
Appendix B Installation or Use Problems by Child Safety Seat, Test Vehicle, and Seat Location: Toddler Seats 25
Appendix C Installation or Use Problems by Child Safety Seat, Test Vehicle, and Seat Location: Infant Seats 27
List of Exhibits
Exhibit $1 \quad$ Child Safety Seats Tested 6
Exhibit 2 Questions from the Child Safety Restraint Examination Form Used in the Analyses 10
Exhibit 3 Percentage of Trials with Problems by Seat Position: Toddler Seats 11
Exhibit 4 Percentage of Trials with Problems by Seat Position: Infant Seats 11
Exhibit 5 Frequency of Each Type of Problem by Test Vehicle and Seat Position: Toddler Seats 13
Exhibit $6 \quad$ Frequency of Each Type of Seat Problem by Test Vehicle and Seat Position: Infant Seats 14
Exhibit 7 Total Installation and Use Problems by Child Safety Seat: Toddler and Infant Seats 15
Exhibit $8 \quad$ Type of Seat Problem by Child Seat and Vehicle Seat Position: Toddler Seats 17

Preface

This publication presents the results of the second of two studies conducted by Abt Associates Inc. in 1988-1989. This study was an examination of the compatibility of child safety seats with these same automobiles. The companion study was a comparison of the comfort and convenience of the automatic safety belt systems in seventeen 1988-89 model year automobiles.

Installation of Child Safety Seats in Selected 1988-1989 Model Year Automobiles

Executive Summary

The National Highway Tra.ffic Safety Administration recognized the need to reexamine how easily and securely currently available child safety seats can be installed in recent model automobiles. The last study to test the installation of child seats was conducted in 1980. In addition, Federal Motor Vehicle Safety Standard 208 requires the installation of automatic protection systems in all new cars effective with model year 1990. Most manufacturers are meeting the standard by equipping their automobiles with automatic safety belts (the rest are using air bags). Thus, there was also a need to examine child safety seat installation and use in vehicles equipped with automatic safety belts.

To achieve this goal, NHTSA contracted in 1988-1989 with Abt Associates Inc. to conduct a study to test the installation of child seats in 17 current model automobiles.

This study was purposely designed to identify problems associated with a relatively recent technological innovation in highway traffic safety--child safety seats. Studies had already shown that this innovation saves lives and has met with consistent driver approval. However, there was a need to identify any current problems. with child safety seats so that what have already been shown to be a life-saving technology might be improved still further.

Study Goals

This study was designed to determine the extent to which currently marketed child safety seats are difficult to install in current model automobiles. The study also tested whether, once installed, the child seats remain securely fastened when rocked or tilted.

The study was designed to identify installation and secureness problems rather than to focus on overall characteristics of child seat use or to identify positive features of the child seats. This focus was chosen in order to identify difficulties with child seats that might be corrected.

Study Design

Seventeen child seat models were selected based on the number manufactured in 1987 and the inclusion of a representative group of newer seats for which manufacturing figures were not yet available. The seventeen child seat models represented nine different manufacturers. While many of the seats were "convertible"--designed for use for toddlers and infants by installing them facing fror:t or facing back--all but one of the convertible seats were tested in the toddler position only. A total of 13 toddler seats and 4 infant seats were tested.

Experimenters were trained in the correct installation procedures. They then installed the child seats in each automobile, going from vehicle to vehicle according to a random sequence developed from a Latin square design. After installing the seat, the experimenters informally tested the extent to which it rotated and tilted forward from the automobile seat by twisting and tugging the seat manually with moderate force. The experimenters recorded their observations on (1) ease of installation, (2) problems associated with installation, (3) whether the child seat interfered with operation of the automatic belt system (front seat only), and (4) looseness of the child seat once installed.

Findings

In general, problems with the installation and use of child safety seats differed significantly by test vehicle but did not vary significantly by child seat. As concerns installation position, a slightly greater number of problems were found in the rear outboard position as compared with the rear center position. The problems are largely associated with use of the seats in those locations, rather than with their installation. That is, once installed, seats are sometimes not secure, rotating and moving forward excessively when pushed. However, installation and use of child seats in the front passenger position appears to present many more problems as compared with the rear seat positions. The tests thus confirmed the recommendations of some manufacturers not to install child safety seats in the front seat of automobiles with motorized safety belt systems.

Introduction

The study of comfort and convenience reported in the companion volume to this report assembled seventeen 1988 and 1989 model year cars in a single location and hired thirty individuals to assist with the study. This provided an opportunity to gain some rough information on the nature of problems that consumers might be likely to encounter with installation of current model child safety seats in recent model automobiles.

Background

There has been a dramatic change in the use of child safety seats during the 1980s. While only 23 percent of children in cars entering shopping center parking lots were observed using child safety seats in 1982, over 83.5 percent were using them in 1988 (Ziegler, 1989). Equally important, between 1983 and 1986 there was a coubling of the correct installation of child safety seats (from 39 percent to 78 percent of seats in use). The last study to iest child seats with automobile safety belt systems was conducted in 1980 (Tom et al., 1981).

Purposes of the Child Safety Seat Study

This study was conducted with the intent of characterizing child safety seat installation in a variety of new passenger cars by individuals possessing a minimum level of child passenger safety technical expertise. The results of the study reflect the level of difficulty that was perceived by these individuals in the installation of the child seats and their perceptions of the correct fit of these child seats. The correct installation and fit of the child seats were not assessed according to an absolute standard. No attempt was made to measure or control inter-rater reliability.

Seventeen child seats were tested in the rear outboard and center seats ois seventeen 1988-1989 model year automobiles. The rear-seat tests were designed to answer the following questicns:

1. Which combinations of child seats and automobiles, if any, present difficulties in rear seat installation?
2. Once installed, which combinations of child safety seats and automobiles, if any, prevent the child seats from remaining securely fastened when rocked or tilted?

The child seats were also tested in the front passenger seat of nine automobiles with motorized belt systems. The front seat tests were designed to answer three questions:

1. Which combinations of child seats and automobiles, if any, present difficulties in front seat installation?
2. Which combinations of child seats and automobiles, if any, cause interference problems with the operation of the motorized safety belt system?
3. Once installed, which combinations of child safety seats and automobiles, if any, prevent the child seats from remaining securely fastened when rocked or tilted?

The owner's manuals for at least some automobiles with motorized belt systems recommend that buyers not use the front seat to install child safety seats. However, it was still important to test child seats with these vehicles in the front seat because many people who use child seats may not read the owner's manual or be told about its recommendations.

A final purpose of the study was to learn whether there are different kinds of problems and their relative frequencies associated with installing and securely fastening child safety seats in different current automobiles.

As stated above, the study was deliberately designed to identify installation and secureness problems rather than to focus on overall characteristics of child seat use or to identify positive features of the seats. This focus was chosen in order to maximize opportunities to identify difficulties with child safety seats that could be corrected in an effort to improve the documented safety benefits that child seats provide.

Test Design and Procedures

Seventeen child seat models were selected based on the number manufactured in 1987 and the inclusion of a representative group of newer seats for which manufacturing figures were not yet available. The seventeen child seat models tested represented nine different manufacturers (Exhibit 1). While many of the seats were "convertible"--designed for use for toddlers and infants Dy installing them facing fror.t or facing back--all but one of the convertible seats were tested in the toddler position only. A total of 13 toddler seats and 4 infant seats were tested.

Each seat was tested in up to seventeen current model automobiles with motorized and non-motorized automatic safety belt systems in the front seats and manual belt systems in the rear seats. (For information cbout the vehicles, see Chapter 3 of the companion study, "A Comparison of the Comfort and Convenience of Automatic Safety Belt Systems among Selected 1988-1989 Model Year Automobiles.") As appropriate, the child seats were tested in each of three positions in each automobile: rear outboard (window) seat, rear middle seat (except for automobiles with no rear middle seat), and front passenger seat. The child seats could not be tested in the front seat of eight test automobiles with non-motorized automatic belt systems because these vehicles did not have manual lap belts in the front seats. In addition, two vehicles had no middle rear seat.

Experimenters were divided into eight pairs, with every pair but one responsible for installing two child safety seats (one team installed three seats). Each pair was trained by automobile safety engineers in the correct installation procedures for its seats. Under the supervision of the safety engineers, the teams then practiced installing its seats in several of the test vehicles. The teams were also supervised during the actual testing by the automobile safety engineers.

During the test, the experimenters installed their child seats in each automobile, going from vehicle to vehicle according to a random sequence developed from a Latin square design. After installing the seat, the experimenters informally tested the extent to which it rotated and tilted forward from the automobile seat by turning and tugging the seat manually with moderate force. The experimenters recorded their observations on (1) ease of installation, (2) problems associated with installation, (3) whether the child seat interfered with operation of the automatic belt

Child Safety Seats Tested

	Toddler Seats
Manufacturer	Model
Century	200
Century	2000 STE
Cosco	Car Seat
Evenflo	7 Year
Evenflo	Ultara
Fisher Price	Car Seat
Cierry Guardian	Convertible
Kolcraft	Perfect Fit
Nissan	Child Safety Seat
Pride Trimble	Pride Ride
Strolee	609
Strolee	626
Strolee	GT 2000
	Infant Seats

system (front seat only), and (4) looseness of the child seat once installed. A copy of the observation instrument may be found in Appendix A.

Data Analysis and Results

As noted above, for policymaking purposes Study Two was designed deliberately to identify problems associated with the installation and secureness of the child seats rather than to evaluate overall characteristics of child seat use.

The analysis focused on four potential problems. An installation problem was indicated if there was any difficulty in installing the seat. An interference problem was noted if the child seat interfered with the operation of the automatic safety belt (front passenger position only). If the child seat rotated more than 30 degrees when pullef from side to side, a rotation problem was indicated. Similarly, a forward motion problem was noted if the top of the child seat moved six or more inches when pulled toward the front of the car. ${ }^{1}$ The data elements from the child safety restraint questionnaire used to identify each type of problem are displayed in Exhibit 2. In the remaining exhibits, the numbers shown are counts of the total number of problems occurring in each cell.

Overview

In general, problems with the installation and use of child safety seats differed significantly by test vehicle but did not vary significantly by child seat. As concerns installation position, a slightly greater number of problems were found in the rear window position as compared with the rear center position. (See Exhibit 3 and Exhibit 4.) The problems are largely associated with use of the seats in these locations, rather than with their installation. That is, once installed, seats are sometimes not secure, rotating and moving forward excessively when pushed. However, installation and use of child seats in the front passenger position (where there were motorized automatic safety belt systems) appears to present many more problems as compared with the rear seat positions (where there were manual belts). The tests thus confirmed the recommendations of some manufacturers not to install child safety seats in the front seat of automobiles with motorized safety belt systems.
${ }^{1}$ Experimenters measured informally the movement of the child seat from side to side and forward by exer:ing moderase force with their hands to pull the seat out of position.

Questions from the Child Safety Restraint Device Examination Form Used in the Analyses

Child Seat Position/ Type of Problem	Column on Questionnaire Where Question May Be Found*	Associated Question(s)
Front Passenger		
Installation Problem	16	Was there any froblem installing the seat?
Instaliation Interference	23	Did the autonatic belt system interfere with the process of installing the seat?
Operation Interference	24	Does the child seat interfere with operation of the automatic safety belt?
Rotation	31	Does the child seat rotate more than 30 degrees or come loose when pulled from side to side?
Forward Motion	18	Distance child seat pitches forward when pulled.**
Rear Outboard		
Installation Problem	33	Was there any problem installing the seat?
Rotation	40	Does the child seat rotate more than 30 degrees or come loose when pulled from side to side?
Forward Motion	41	Distance child seat pitches forward when pulied.**
Rear Center		
Installation Problem	42	Was there any problem installing the seat?
Rotation	49	Does the child seat rotate more than 30 degrees or come loose when pulled from side to side?
Forward Motion	50	Distance child seat pitches forward when pulled.**

[^0]
Percentage of Trials with Problems by Seat Position:

 Toddler Seats ${ }^{1}$

Fercent oi ooservations where at least one problem was indicated

- He chis seats were not tested in the front seat of the elght test vehicles with non-motorizad automatic belt $\because s t e m s$ serause these automobiles do not have manual lap belts in the front sedts

Exhibit 4
Percentage of Trials with Problems by Seat Position: Infant Seats ${ }^{1}$

[^1]
Types of Problem by Vehicle

Exhibit 5 shows the frequency of problems by type of problem and vehicle for toddler seats. Analysis of Variance (ANOVA) was used to determine whether the number of problems in each installation position was significantly influenced by vehicle characteristics. ${ }^{1}$ There were three dependent variables--the total number of problems recorded for each of the three installation positions. A categorical variable representing vehicle was used as the independent variable.

The data suggest that problems occur more frequently in the rear window passenger position than in the rear center position. Problems were encountered in over 26 percent of the trials in the rear outboard position as compared with 21 percent in the rear center position. In both rear positions, problems were more likely to ocrur in the operation and use of the toddler seats after installation than in the installation process. Rotation and forward motion appear to be the most frequent problems. The data suggest rotation and forward movement problems occur frequently (84 p.ercent of the trials) in the front passenger position as well. In addition, there is evidence that the child seats in the front passenger position interfere with the operation of the motorized safety belt (23 percent of the trials).

Exhibit 6 displays similar data for infant seats. As with the toddler seats, the total number of problems in each position varies significantly by vehicle. Again, problems in the rear seat positions stem principally from rotation and forward motion rather than-installation. As with the toddler seats, the rear window position tends to be somewhat more problematic than the rear center position, with problems occurring in 28 percent and 18 percent of trials for rear window and rear center positions, respectively. The front passenger position, however, has the highest incidence of problems (33 percent).

Problems by Child Seat Model

Exhibit 7 shows the total number of problems and this total as a percent of possible problems for each child seat evaluated. Analysis of variance (ANOVA) on the

[^2]Exhibit 5
Frequency of Each Type of Seat Problee by Teat Vehicte and seat Positions Todder seatal

		Rear Outbosrd				Rear Conter				Front Passenger ${ }^{\text {b }}$						
		Instalialion Problom	Aotation	forvard Motion	$\mathrm{n}^{\text {fotatas }}$	Anstallation	Aolation	formert Motion		Installation Probict	Installation interlerence	Operation Interlerence	Rotalion	ForuersMotion		
			4	6	1130.6	1	3	-	- 20.5					11	28	S0.0
Motorlzed	Dodge Shadow	1														
	ford Escorl	2	1	2	512.0	n/0	n/8	n/t	n/0 n/0	0	n/0	1	3	2	6	11.5
	ford fempo	0	3	0	36.3	1	3	0	111.1	0	n/s	0	3	5	10	20.0
	Mesdo 626	2	4	3	923.1	3	4	-	1133.3	2	1	3	12	12	25	55.0
	Milsublshl Nir oge	3	5	-	$12 \quad 33.3$	1	9	4	$14 \quad 39.9$	0	n/0	4	7	s	15	30.0
	Wissan Mariae	0	s	4	923.1	2	1	,	$15 \quad 30.5$	0	$9 / 0$	3	12	13	20	\$8.8
	Peugot 403s	2	6	b	$14 \quad 33.9$	0	5	2	719.4	0	n/0	,	13	13	21	\$1.9
	Saso 900 Turbo	2	5	3	$10 \quad 21.6$	2	4	-	$10 \quad 27.8$	0	n/s	2	$10)$	10	22	45.81
	royote cemry	0	8	7	15 41.1	2	3	0	912.0	0	n/0	5	13	13	31	59.6
	Total	12	11	3	68 20.2	12	35	27	1424.9	1	2	23	84	84	193	42.1
Non-	Hyundal Excel	0	6	1	19.4	1	2	0	$3 \quad 9.1$	n/4	n/0	n/0	9.	n/s	n/4	n/0
	rolkswagen Jette	0	3	3	- 16.7	1	2	3	- 20.5	n/0	n/s	n/o	n/8	n/a	n/¢	a/8
	Yugo 6V	2	8	9	$19 \quad 40.1$	n/s	n/0	$n / 0$	n / s n/0	$n / 0$	n/a	n / s	n/0	n/e	n/4	*/4
	Cherrolet Berretta	1	3	3	117.9	1	1	2	10.3	n/0	n/4	n/o	$n / 8$	n/e	n/4	n/s
	Ponsiec Bonovilite		6	6	1433.9	0	3	1	$10 \quad 23.6$	0/0	n/s	n/0	n/s	n/a	a/4	a/s
	Pontlac Grand An (2 dr)		5	5	1130.6	1	1	1	31.1	n/8	n/8	n/0	n/0	n/0	n/s	n/e
	Pontloc Grond Am (14 dr)		1	1	\$ 12.8	0	2	1	0.3	n/a	n/s	n/4	n/s	n/8	n/4	n/a
	Ponflac Grand Prix		7	5	$12 \quad 50.7$		6		$11 \quad 26.2$	n/s	n/s	n/a	n/8	n/s	n/o	n/s
	rotal		$42 \mid$	35	$81 \quad 26.7$	5	17	20	$42 \quad 15.9$	n/0\|	$n / 1$	n/a\|	$0 / 81$	n/al	n/o	n/s
Total		$16)$	83	70	$169 \quad 36.4$	11	321	11	11620.1	4	2	23)	84	84	193	42.1

'ine numbers in the body of the tsble show the number of problems reporied in esch cell. The number iNJ ghown in the totel column excludes problem counts for Instaliation intarierence. since this acestion was asked only li thers was an thataliotion Problae. ine percentage (8) is the total nubber of problems as í parcent of roral posstble problems.
nthe total numbers of problems in the indicated sest position ore signficantly dilierent at the pis level of conlidence among the vahleles tested.
The chlld sests were not tested in the front gest of the elght fest vehleles with non-motorlzed automotic belt systoms beceuse these butomoblles do
not have manual lap belts in the tront geats

Exhibit 6

Prequency of Each Type of Seat Problem by Test Vehicle and seat Poalitioni Infant seat il

[^3] counts for instalistion interlerence, slace thls quastion was asked only it there was on Instalfatlon Problem. The percentoge (s) is the total虽

The total numbers of problems in the indicated sest position ore signilcantir dilierent it the 958 level of confldence among the vehicles tastan
 not nave menuel lap belts in the front seats.

Exhibit 7

Total Installation and Use Problems

 by Child Safety Seat: Toddler and Infant SeatsTotal Number Percent ofof Problems
Possible Problems
Manufacturer/Model
Toddler Seats
Century 200 47 27.6
Century 2000 STE 42 24.7
Cosco Car Seat 36
21.2
Evenflo 7 Year 42 24.7
Evenflo Ultara 19
$: 1.9$
Fisher-Price 37
Gerry Guardian Convertible 21.821.8
Kolcraft Perfect Fit 30
17.6
Nissan Child Safety Seat 22
Pride Trimble Pride Ride 33
12.9
Strolee 609 4722.0
2\%.6Strolee 626
53 3 . 2
Strolee GT2000 35 20.6
480
Total/Average 22.0
Infant Seats
Strolee 626 35 20.6
Century Infant Love Seat 11.8
Evenflo Dyn-O-Mite 27Kolcraft Rock-N-Ride Carrier3520.6
Total/Average 117 17.2
total number of problems in each installation position was conducted separately for toddler and infant seats. No consistent statistically significant differences (at the 95 percent level of confidence) in total problems by child safety seat were found.

Exhibit 8 presents the data for toddler seats by seat location in the test vehicles. In the rear outboard position, the total number of problems differ significantly by child seat. Problems occurred most frequently with the Strolee 609, the Fisher Price Car Seat and the Strolee 626--problems were reported in approximately 40 percent of the trials for these child seats. In the front passenger position, differences by toddler seat in the total number of problems in the front passenger position are not statistically significant. For infant seats, no statistical:y significant differences by seat were found for any of the three installation positions.

The above analysis examines the child seats separately in relation first to vehicles and then to type of child seat. Appendix B and Appendix C display the data by test vehicle, child safety seat, and test position for toddler and infant seats. However, the data are of very limited use because the cells are so sparse.

Type of Seat Problem by Child Seat and Vehicle Seat Position: Toddler Seat: ${ }^{1}$

'The numbers in the body of the rable show the numbe: of problems reported in each cell. The number (N) shown in the totel column excludes problem
 number of prob!cms as a percent of totol possible problems.
${ }^{0}$ The total numbers of problemis in the indicated seat position are signticantly different at the 958 level of contidence among the vehleles tested.

- Dinstallation interterence was recorded only when there was an instaliation problem. N/A indicates that installation interierence was not releuant

References

Tom, J.C., Petersen, D.D., Ribbins, C.M., and Peters, R. Evaluation of the Comfort and Convenience of Safety Belt Systems in 1980 and 1981 Model Vehicles (Washington, D.C.: National Highway Traffic Safety Administration, 1981).

Ziegler, Peter N. Use of Child Safety Seats. (Washington, D.C.: National Highway Traffic Safety Adiministration, 1989).

Appendices

CHILD SAFETY RESTRAINT DEVICE EVALUATION FORM

EVALUATION FORM		
		ID \# 1-71
		Card \#88
Vehicle Model Name	Number	Batch 9-10
Child Seat Model Name	Number	3-141

A. FRONT OUTBOARD PASSENGER POSITION

NOTES:
a. Only test in cars that have a manual lap belt. Be sure to use special seat belt adaptors if required by manufacturer to install child seats.

Record type of lap belt retractor installed in this car.
Automatic locking (belt locks when you stop pulling it) 1

Emergency locking (belt does not lock-up)
b. When installing be sure to snug up the belt by pushing down on the child seat.
c. Leave the automatic safety belt connected in the automatic mode while installing the child seats.

INSTALL THE CHILD SAFETY SEAT

1. Was there any problem installing the seat? CIRCLE ONE. Yes 1
a. If you answered YES, please describe the problem(s): No 2
\qquad
\qquad
2. Did the automatic belt system interfere with the process Yes 1

CLOSE THE PASSENGER DOOR AND THEN OPEN IT WHILE WATCHING THE AUTOMATIC SAF'ETY BELT OPERATION.
3. Does the child seat interfere with operation of the automatic salety belt? That is, does the belt bind up or catch on the child seat when the door is opened or closed? CIRCLE ONE.

No 2
a. If you answered Yes, please describe the problem(s).
\qquad
4. Try to pull the child seat from side to side (car door to car door). Does the child seat rotate more than about 30 degrees or come loose? CIRCLE ONE.

Remains tight, or rotates no more than 30 degrees to either side	1		
Rotates more than 30 degrees to either side but			
does not come loose		$\quad 2$	Seat comes loose
:---	:---		

5. Grasp the top of the child seat and pull slowly toward the front of the car.

Measure how far the child seat
CIRCLE ONE.
pitches forward from the car seat.
Measure distance moved as shown below.
Less than 2 inches
2-5.99 inches

Be sure not to include any measured distance between the car seat and the child seat that exists before pulling on the seat.
B. INSTALL THE CHILD SEAT IN THE REAR OUTBOARD SEAT (DRIVER SIDE)

1. Was there any problem installing the Seat? CIRCLE ONE. Yes 1
a. If you answered YES, please describe the problem(s): No
\qquad
\qquad
\qquad
\qquad
\qquad
2. Try to pull the child seat from side to side (car door to car door). Does the child seat rotate more than about 30 degrees or come loose? CIRCLE ONE.

Remains tight, or rotates no more than 30 degrees $\quad 1$ to either side
Rotates more than 30 degrees to either side but 2 does not come loose
Seat comes loose 3
3. Grasp the top of the child seat and pull slowly toward the front of the car.

Measure how far the child seat pitches forward from the car seat. Measure distance moved as shown below.

CIRCLE ONE. Less than 2 inches

Be sure not to include any measured distance between the car seat and the child seat that exists before pulling on the seat.
C. INSTALL THE CHILD SEAT IN THE REAR CENTER POSITION

1. Was there any problem installing the Seat? CIRCLE ONE. Yes
a. If you answered YES, please describe the problem(s): No
\qquad
2. Try to pull the child seat from side to side (car door to car door). Does the child seat rotate more than about 30 degrees or come loose? CIRCLE ONE.

Remains tight, or rotates no more than 30 degrees 1 to either side
Rotates more than 30 degrees to either side but 2
does not come loose
Seat comes loose 3
3. Grasp the top of the child seat and pull slowly toward the front of the car.

Measure how far the child seat pitches forward from the car seat. Measure distance moved as shown below.

CIRCLE ONE.

Less than 2 inches	1
$2-5.99$ inches	2
$6-10$ inches	3
Seat comes loose	4

Be sure not to include any measured distance between the car seat and the child seat that exists before pulling on the seat.

		000ge-snocon	Foro-Escor	Ford Icono	mesau-676	Mifsubiniamir spe	NissonManion	\|Pengot-a0ss	$\begin{aligned} & \text { Sact } 900- \\ & \text { Turdo } \end{aligned}$	
$\left\lvert\, \begin{aligned} & \text { Centurpo } \\ & 200 \end{aligned}\right.$	\|s ron Pessenger	2		. ${ }^{\text {a }}$		2		2		
	Aear -incor	0		1				20		
	Rear Center	0	n/a	1	--	2		2		
\mid	\|frons Pascangar	3	I	1	2	2		2		
	neor wiacor	\bigcirc	1	0	3	1		1		
		2	1 no	1	-1	2		1		
$\begin{aligned} & \operatorname{cosec}-\operatorname{cer} \\ & \operatorname{sen} t \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { Front } \\ & \text { Passenger } \end{aligned}\right.$	2		0		-1		2		
	Aoer vindor	1		0		1		1-2		
	$\left\lvert\, \begin{aligned} & \text { aper } \\ & \text { center } \end{aligned}\right.$		n-me	0	-------------21	1		10		
$\mid \text { Evont } 1007$	\|front Passanger	2	I	.	-------------3	- 2		2		
	Aner wiados	1		0		-10				
	$\left\lvert\, \begin{aligned} & \text { aner } \\ & \text { centor } \end{aligned}\right.$	1		0				10		
	front	0	1					12		
	amar wincor	0	1	0	0			0		
	Rear Center			0	--..----	\|-------1		10		
fismer Price	$\begin{aligned} & \text { Eront } \\ & \text { Passangar } \end{aligned}$				\cdots			22		
		2	3					2 2		
	$\left\lvert\, \begin{aligned} & \text { Ryar } \\ & \text { Center } \end{aligned}\right.$		$01 . . .0 .0$ n/t	0				$0 \quad 0$		
Cerey Guartion Converti ols	$\begin{aligned} & \text { Front } \\ & \text { Passenger } \end{aligned}$			2				212		
	$\left\lvert\, \begin{aligned} & \text { Rear } \\ & \text { Wineon } \end{aligned}\right.$		-					21 - 3		
	Anear Center	0		1				310		
$\left\lvert\, \begin{aligned} & \text { Kolerat } \\ & \text { Morer } \\ & \text { Portect } \\ & \text { Fit } \end{aligned}\right.$	frons Passanger	2	2					212		
	Reer mineor	- 2	1					0 0 ${ }^{2}$		
	Aear Center							0		
Nissan Chitdo Saterv 15A4"	$\left\lvert\, \begin{aligned} & \text { F ront } \\ & \text { Passenger } \end{aligned}\right.$		1					2		
	$\left\{\begin{array}{l} \text { Parar } \\ \text { Wincon } \end{array}\right.$			0				0		
			-					10		
$\begin{aligned} & \text { Prioe } \\ & \text { Trigute } \\ & \text { Prioe } \\ & \text { Rioe } \end{aligned}$	Pron	\|-...----	1	1.-.......-0				21		
	$\left\{\begin{array}{l} \text { Rear } \\ \text { W, neon } \end{array}\right.$	-	0	1		,		$0!$		
	Rear Conter		n			1		2		!
	fror. Passenger		2			\|		3		
	-3arro-		1	2		1				
	Rear \|Center		2			1		2		0
	\|Front		-			3		3		
	$\left\lvert\, \begin{aligned} & \text {--ar } \\ & \text { Reor } \\ & \text { ninoom } \end{aligned}\right.$		21	0		1		-1\|		1
	Rear Center		0			0		2		3
	IFront , Passenger		31	ol		${ }_{2}$!		?		$2!$
	$\begin{aligned} & \text { Feer } \\ & \text { ininoon } \end{aligned}$		21	1		01		01		8
	Resp 		1			oí		! 1		$: 1$
1-0.al	inumor		51	!	$!$	9		521		al
	PPercon:	oorami 34.	6i-......... 12	11	1 - 37	1-1........	-..-	.0i	32	31

					Throt Molat mon-motordeece 					Total (N)	Purcent ot Mossible Argelinet
		mynncalInce!	$\underset{\text { volkeregen- }}{\substack{\text { ren }}}$	'upo	Chourolet: Eprrate	PomplasSenevilio	$\left\lvert\, \begin{aligned} & \text { Mon+iac- } \\ & \text { Grond An } \\ & 12 \text { ar) } \end{aligned}\right.$	Aontiac Crond an (4) Of)	Pontiac Grand Bran		
\mid	$\left\lvert\, \begin{aligned} & \text { Front } \\ & \text { Pascenger } \end{aligned}\right.$. $/ \mathrm{m}$	n/0.	n/0.		n	n/s	n/o	n/e	17	47.2
	freser W. nemen	0	0	${ }_{2}$,		,	。	1	15	29.4
	$\left\lvert\, \begin{aligned} & \text { aeer } \\ & \text { conve } \end{aligned}\right.$	0	0	$\cdots 1$	2		10	n/s	2	15	33.3
$\left\|\begin{array}{l} -2004 \\ \operatorname{cont} y= \\ 2000 \end{array}\right\|$	\|front	are	m/al	$0 / 8$	a/s	n	n/4	n/a	a/e	19	32.7
	bow	1	01	2	0		2	0	1	12	23.5
	$\left\lvert\, \begin{aligned} & \text { anow } \\ & \text { Conter } \end{aligned}\right.$		0	nol	0		0	1	3	11	24.4
$\left\lvert\, \begin{aligned} & \text { cases-Cer } \\ & \text { seap } \end{aligned}\right.$	\|front	a/s	arel	anol	0	\sim	n/a	$0 / 0$	0	14	34.8
	$\begin{aligned} & \text { Boer } \\ & \text { Dineor } \\ & \hline \end{aligned}$	0	2	0	0		2	0	0	14	27.5
	\|lener	0	0	nol	0		0	0	0	1	17.2
$\left\lvert\, \begin{aligned} & \text { Enoen } 10-7 \\ & \text { reer } \end{aligned}\right.$	$\begin{aligned} & \text { sront } \\ & \text { ontenger } \end{aligned}$	a/t	0	n/al	0	\cdots	n/8	n/a	n/o	18	50.0
		2	0	21	1		,	0	1	14	37.5
	lopor	0	1	mal	1		0	1	2	10	22.2
Emantion fulters	$\begin{aligned} & \text { Front } \\ & \text { Paseaner } \\ & \hline \end{aligned}$	\cdots	2/3	Mol	\sim	-	$0 / 0$	$0 / 3$	$0 / 8$		23.0
	naer vincos -2		0	0	-		10	0	0	4	7.8
	$\begin{aligned} & \text { beor } \\ & \text { center } \end{aligned}$		1	m/a	\bigcirc				0		13.3
\{siener-	$\left\lvert\, \begin{aligned} & \text { Front } \\ & \text { Passenger }\end{aligned}\right.$	a/d	\%/a	w-1	0	,	$n /$	n/e	n/o	12	33.3
			2	0	2			0		22	43.1
	$\left\lvert\, \begin{aligned} & \text { neer } \\ & \text { Center } \end{aligned}\right.$		\bigcirc	ara	0			0	,	,	6.6
		a/	a/d	\cdots	n/t	N	$n / 8$	n/8	m/8	17	47.2
	Winer	0	0	1	0				0	1-	17.6
			2	m/s	0					1	24.4
	$\left\lvert\, \begin{aligned} & \text { Frent } \\ & \text { Pressenger } \\ & -9 \end{aligned}\right.$	a/a	ad	aral	a/8	-	$0 / 8$	a/e		14	38.8
			01	2	--................				,	12	23.5
	$\begin{aligned} & \text { peor } \\ & \text { conter } \end{aligned}$		1	n/0	0			0			4.9
Wigsen Cnita 50407y \|seet	\|Front Pasconger	ara	n/al	n/a	n/e	n/	n/a	n/a	n/e	16	44.4
	$\begin{aligned} & \text { Aove } \\ & \text { Wincon } \end{aligned}$		0	0	0		0	0			7.8
	$\left\lvert\, \begin{aligned} & \text { neer } \\ & \text { center } \end{aligned}\right.$		0	aral	0						4.4
	$\left\lvert\, \begin{aligned} & \text { Front } \\ & \text { Pansenger } \end{aligned}\right.$	$0 / 8$	n/al	a/s	a/4	n	\cdots	a/a	n/8	\bigcirc	23.0
			0	31	0			1			17.6
	Rear center		1	a/	0					15	33.3
$\begin{aligned} & \text { S1-0 } 000 \\ & 600 \end{aligned}$	$\begin{aligned} & \text { Pron } \\ & \text { Pasenger } \end{aligned}$	a/m	mal	9/8	n/8	$n /$	n/0	n/s	n/o	10	30.0
	$\begin{aligned} & \text { near } \\ & \text { wincow } \end{aligned}$		of	${ }_{2}$						22	43.1
	Alar Cenver		0	$n / 0$	0					,	15.6
$\left\|\begin{array}{l} \text { sproleot } \\ \mathbf{4 7 6} \end{array}\right\|$	$\begin{aligned} & \text { Front } \\ & \text { Passonger } \end{aligned}$	$9 / 4$	n/al	0	n/8			n/8	n/s	19	32.8
	-anar near wincon		2	3							37.3
	$\begin{aligned} & \text { Aoar } \\ & \text { Conter } \end{aligned}$		0	$n / 1$	0					--->--3	33.3
Srrousere-or2000	$\begin{aligned} & \text { Front } \\ & \text { Paseenger } \end{aligned}$	$n / 4$	\cdots	n/01	n/e		\cdots	nos	n/s	13	36.1
							1	0		13	25.5
	$\left\lvert\, \begin{aligned} & \text { Qarar } \\ & \text { Conter } \end{aligned}\right.$		0	n.1	1					9	20.0
Tora'	nneor	10	14	\cdots	11	2	$1-14$	a	23	40	23.0
	Porcont A	120	17.91	4	---7,	30.	17.9			28.01	

[^4]Appendix C
Installation or Use Problems by Child Safety Seat, Test Vehicle, and Seat Location: Infant Seats

N

[^5]
[^0]: *See Appendix A for a copy of the questionnaire.
 ** problem is indicated if the child seat moves 6 or more inches or comes loose.

[^1]: 1 Percent of observations where at least one problem was indicated.
 2 The child seats were not tested in the front seat of the eigh: tes: :enicies with non-motorinted automatic belt systems because these automobiles do not have manuab lap belis ir ine iromt sects

[^2]: ${ }^{1}$ Since neither the sample of vehicles nor the sample of child safety seats was scientifically selected from its respective population, the results of this analysis can not be generalized to the vehicle population. A statistically significant result means that we would expect similar findings if the experiment were repeated with the same vehicles and child seats.

[^3]: The numbers in the body of the table show the number of orobleas reported in esch cell. The number (W) ahown in the totel columen exclutes problee

[^4]: these euremplites do not heve aenwel lea celts in the tront seats.

[^5]: ${ }^{\mathrm{a}}$ The child seats were not tested in the front seat of the eight test vehicles with non-motorized automatic belt systems because these autonobiles do not have manual lap belts in the front seats.

